Summary of Geometrical Proof Reasoning

Angles and Parallel Lines

(a) If AOB is a straight line, then $a + b = 180^\circ$. (adj. \angles on st. line)
(b) If AO, FO, GO, BO and EO meet at a point O, then $a + b + f + g + h = 360^\circ$ (\angles at a pt.)
(c) If CD and EG intersect at a point, then $c = d$ (vert. opp. \angles)
(d) If $AB \parallel CD$, then
 i. $h = d$ (corr. \angles, $AB \parallel CD$)
 ii. $a = d$ (alt. \angles, $AB \parallel CD$)
 iii. $d + b = 180^\circ$ (int. \angles, $AB \parallel CD$)
(e) $AB \parallel CD$ if
 i. $h = d$ (corr. \angles equal)
 ii. $a = d$ (alt. \angles equal)
 iii. $d + b = 180^\circ$ (int. \angles equal)

Angles of a triangle and a convex polygon

(A) Triangle in general

(a) In $\triangle ABC$, $a + b + c = 180^\circ$. (\angle sum of \triangle)
(b) If BC is produced to D, then $d = a + b$ (ext. \angle of \triangle)

(B) Isosceles Triangle

(a) Definition: An Isosceles Triangle is a triangle with 2 sides equal.
(b) If $AB = AC$, then $b = c$ (base \angles, isos. \triangle)
(c) If $b = c$, then $AB = AC$ (sides opp. equal \angles)
(C) Equilateral Triangle

(a) Definition: An equilateral triangle is a triangle with all 3 sides equal.

(b) If \(\Delta ABC \) is equilateral, the \(a = b = c = 60^\circ \) \textit{(property of equilateral \(\Delta \))}

(c) If \(a = b = c \), then \(\Delta ABC \) is equilateral.

(D) Convex polygon

(a) Definition: A convex polygon is a polygon in which each interior angle is less than \(180^\circ \).

(b) The sum of all interior angles of a n-side polygon equals \((n - 2) \times 180^\circ \). \textit{(\(\angle \) sum of polygon)}

(c) The sum of all exterior angles of a n-side polygon equals \(360^\circ \) \textit{(sum of ext. \(\angle \)s of polygon)}

Similar Triangles and Congruent Triangles

(A) Similar Triangles

If \(\Delta ABC \sim \Delta XYZ \), then

(a) \(\angle A = \angle X \, , \, \angle B = \angle Y \, , \, \angle C = \angle Z \) \textit{(corr. \(\angle \)s, \(\sim \Delta \)s)}

(b) \(\frac{AB}{XY} = \frac{BC}{YZ} = \frac{CA}{ZX} \) \textit{(corr. sides, \(\sim \Delta \)s)}

(B) Congruent Triangles

If \(\Delta ABC \cong \Delta XYZ \), then

(a) \(\angle A = \angle X \, , \, \angle B = \angle Y \, , \, \angle C = \angle Z \) \textit{(corr. \(\angle \)s, \(\cong \Delta \)s)}

(b) \(AB = XY, BC = YZ, CA = ZX \) \textit{(corr. sides, \(\cong \Delta \)s)}

Remarks:

(a) Name of Angles

i. \(0^\circ < \text{acute angle} < 90^\circ \)

ii. \(90^\circ < \text{obtuse angle} < 180^\circ \)

iii. \(180^\circ < \text{reflex angle} < 360^\circ \)

iv. right angle = \(90^\circ \)

v. straight angle = \(180^\circ \)

(b) The sum of a pair of angles equal \(90^\circ \), the pair of angles is called \textit{complementary} angles.

(c) The sum of a pair of angles equal \(180^\circ \), the pair of angles is called \textit{supplementary} angles.

(d) There are totally five reasons to prove two triangles are congruent. They are \textit{SSS}, \textit{SAS}, \textit{ASA}, \textit{AAS}, \textit{RHS}.

(e) There are three reasons to show that two triangles are similar. They are \textit{AAA}, \textit{3 sides prop.}, \textit{ratio of 2 sides, inc. \(\angle \)}.

(f) All properties of parallelogram, rhombus, rectangle and square, please refer back to your textbook volume 3.

(g) And mid-point theorem, intercept theorem and equal ratio theorem, please also refer back to Book 3.